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ABSTRACT ( "

For many practical spacecraft applications, algorithms for determining spacecraft attitude must combine

inputs from diverse sensors and provide redundancy in the event of sensor failure. A Kalman filter is

suitable for this task, however, it may impose a computational burden which may be avoided by sub

optima/methods. A sub optimal estimater is presented which was implemented successfully on the Delta

Star spacecraft which performed a 9 month SDI flightexperiment in 1989. This design sought to minimize

algorithm complexity to accommodate the limitations of an 8K guidance computer. The algorithm used is

interpreted in the framework of Kalman filteringand a derivation is given for the computation.

INTRODUCTION

Historically, satellite attitude determination has

relied on simple deterministic calculations lor

batch processing of telemetry data because real-

time recursive algorithms such as Kalman filters

imposed an impractical computational burden.

This burden has become less daunting with

advances in flight-qualified microprocessors,

however, simple algorithms remain important for

maintaining the reliability and controlling the

development cost of real-time software.

This paper examines the algorithm used to

estimate attitude for Delta Star. This algorithm

applies deterministic gains to measurement

data. Nonetheless, it is desirable to perform an

statistical error analysis. The attitude estimation

problem is cast as a Kalman filtering problem

such that the performance of the sub optimal

deterministic gains can be quantified. As a

convenient byproduct, the Kalman gains implicit

in this setup provide an alternative estimation

procedure with only a modest increase in

computations.

DELTA STAR BACKGROUND

The SDIO sponsored Delta Star spacecraft

operated on-orbit for nine months during 1989.

Its objectives included multi-spectral observation

of low earth orbital phenomena against various

earth and space backgrounds. Numerous

pointing and tracking guidance modes required

modest but reliable, knowledge of spacecraft

attitude.

The spacecraft consisted of two sections: a

guidance and propulsion section and a sensor

section. Each was controlled by separate

processors designated guidance computer (GC)
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and flight processor (FP) respectively. All

primary GN&C functions resided in the GC.

Because the guidance and propulsion section

was based on the Delta launch vehicle second

stage, the GC was a Delco Magic 352 guidance

computer, featuring 8K of random access

memory to accommodate data, program

instructions and a resident operating system. In

addition to GN&C functions, the GC flight

program sequenced discretes to control avionics

subsystems, processed telemetry and uplinks

from the ground, and provided a protocol for

communication with the FP. The limited memory

budgeted lor attitude determination made a

simple design imperative.

Figure 1. Delta Star Spacecraft

QUATERNION CONVENTIONS

In this section notation and conventions are

developed for the quaternion q. The two

primary coordinate frames of interest in this

report are an inertial reference frame I, and a

spacecraft body-fixed frame B. A coordinate

frame is given by a triad of orthonormal basis

vectors which obey the right-hand rule. A

change of basis is specified by a rotation or

direction cosine matrix Tf defined by

y, = T_y, (1.)

where y, E _._3

y, _ 9_3

are the same vector expressed in I and B

coordinates.

The rotation matrix T_ can be represented by a

quaternion q. the quaternion is a globally

nonsingular mapping of the rotation matrix. The

set of attitude quaternions is defined as

_>o}.q, +_q, =l;q,

)

where the first condition is the unit quaternion

normality constraint and the second is a

convention to eliminate the ambiguity of sign

which arises because (qJ,qv) and (-qs,-qv)

represent the same attitude. With these

conventions, T_ can be computed from the

quaternion q by the formula

TB = I + 2_ 2, - 2q,_q, (3.)

where for a _ 9_3 , E_mis defined as

_,,:9_ 3 xg_
c = _=b
c=axb

(4.)

for a, bE _3. Quaternion multiplication is

defined as follows:
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FIGURE 2. Delta Star Attitude Filter

INTEGRATION
ROUTINE

c=ab; a,b_Q
c. : a.b .-[av,l_, ]
Cv = a=bv + b.av + av xt:_ (5.)

c = (c,,c,) Q

Quaternion multiplication is important because it

corresponds to compositions of quaternion

rotations. That is, for coordinate frames A,B,C, if

ql rotates A into B and q2 rotates B into C, then

q3 = qlq2 rotates A into C.

The quaternion q representing T_, evolves in

time according to the equation

1
q = _q(0,(o) (6.)

where co is the instantaneous angular velocity of

the B-frame with respect to the I-frame specified

in B coordinates.

The inverse of q is denoted q' which is also

called the conjugate of q [3] and is defined by

q" = (q,,-q), and qq* = q'q = (1,0)

)

Finally, a vector vl Eg_ 3 in I coordinates is

transformed into VB _ 33 in B coordinates by

(O,ve) =q'(O, vt)q=(O,Tavl) (8.)

DELTA STAR ATTITUDE DETERMINATION

The attitude sensors on Delta Star spacecraft

consisted of five sun sensors and a dual conical

scan horizon sensor. The five sun sensors were

configured to provide omni-directional sun

coverage. The horizon sensor had a 26°x26 °

field of view. These sensors provided attitude

measurements for comparison against on-line
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ephemeris. The FP edited sensor data for wild

points and compensated horizon sensor data for

earth oblateness before passing unit vectors for

sun and nadir across a communication interface.

Modern earth sensors are equipped to provide

such compensation using embedded

microprocessors. The Delta Star Attitude Filter

(DSAF)design is shown in Figure 2.

Traditional deterministic methods which compute

a direction cosine matrix from a pair of

independent measured vectors, such as the

TRIAD algorithm [2], offer extreme simplicity but

suffer from several deficiencies,

1. Only the current vector pair

factor into the attitude estimate (i.e.

noisy measurements are not averaged).

2. Nearly collinear measured

vectors produce dubious solutions

3. The two vectors of a pair must

be synchronous for a solution and cause

complications if they arrive

asynchronously.

4. Measurements from different

sensors cannot be weighted to reflect

relative noise levels.

A Kalman filter will eliminate these deficiencies.

However, the computations required by such a

filter were considered prohibitive for the Delta

Star application. The design shown in Figure 2.

also eliminates these deficiencies, but without

the matrix computations required by the Kalman

filter to propagate a covariance matrix and

compute a gain as a function of the covariance.

The constants (z and 13are design 3arameters

used to control noise rejection and to weight

measurements from sun and horizon sensors

with respect to each other.A method for

preforming a statistical error analysis of this

design is presented below. Sub optimal gains

are derived in terms of O, and I_. A statistical

interpretalion of these gains is given which

provides considerations for selecting (Z and I_.

In Figure 2., a running estimate of attitude is

maintained by integrating angular rates from

gyros according to (6.). This running estimate

denoted by q differs from q as a result of gyro

drift and initial condition errors.

A sun sensor produces two measurements from

which the sun vector in B-coordinates can be

derived. An earth nadir vector is similarly

derived from the outputs of an horizon sensor.

Specification of this processing will not be given

here. These computations were performed by

the FP for Delta Star are not formally considered

a part of the DSAF design.

We will distinguish between observation vectors

and measurements of these vectors. An

observation vector will be denoted by eCA,E9{3

for time tk where A is a tag denoting the type of

observation {S:sun,N :nadir}.and C denotes the

coordinate frame in which the vector is

expressed.

A measurement ZAk Eg{3 of eaAk is derived

from sun and horizon sensors. For our
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purposes, the former is a "noisy" version of the

latter.

The vectors eNk and eSk are available from an

on board ephemeris calculator. From these

reference vectors estimates of e_kdenoted by

_, are computed by

(9.)

The discrepancy between q and _ is then

estimated from the discrepancy between #BAk

and z_. In Figure 2., we note that the

discrepancy between _k and z,X. is captured

in the form of the cross product of these two

vectors which is used to compute a corrective

rate by which to improve the estimate q.

The discrepancy between q and _ will be

defined by

0o.)

Because &_. can be computed from &:/v using

the normality constraint in (2.), &:Iv will be used

to define the attitude error. In the statistical error

analysis below, we investigate the behavior of

P= Cov(Sqv) for the DSAF given specified

statistical assumptions.

In the following, we derive a measurement

V A "sequence { k}k= 1 and matrix sequences

{##k,Hk,Kk}'_=lsuch that under specified

conditions the following error propagation and

update equations apply for the DSAF:

V_ = H_&:lv , +'qAk;Cov(q_ ) =R_
-+ A A

5qv , = &_; , + K k (Vx - H Ak_JClv, )

TO begin, v_ is defined by

(11 .)

v: xz: (121

where _ is considered gaussian white noise

with covariance matrix R_ Given ¢_, we can

define h_:91 3 --4,913 from (11.) by

v_ A= h; (M,k )+ (13.)

The Jacobian matrix of h::91 3 _> 913 is given by

"a 2 (14.)H_ = Ohk (_qv, )=-2Ti Q.

where D is the derivative operator, _

computed from (2.) and e = e#

Then

is

v: = + l)
)

so that to first order

VAk=H,_Iv, +q_ (1&)

This is the linearized observation equation.

By (5.) and (9.) if _=0 over the interval

[tk,tk+l)

_qv,+, = _Sqv, (17.)
=_Sqv _ ;_, =1
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This is the linearized state provides d), and

gives the linearized state equation Finally.

1

= 2 _1(0' COJr E): i_(tk ) = qk ; qk+l = Cl(t*)

(18.)

To first order this is equivalent to the Extended

Kalman Filter (EKF) update scheme defined by

the procedure

q,- = _k

1 #(0, 03 + _.); "qCtk ) _-- #; ; qk'+l = #(tk )0-- 7

)

where

q'k'+l =(Ik+1 +0(_); "C=tk+l--t*

(20.)

Then to summarize, (16.),(17.) and (19.) provide

an a set of propagation and update equations in

the same form as (11 .) with

K s = (_'cfak (22.)

K,"=p t',ss
This signal generation model enables us to

analyze the behavior of the covariance

P, = Cov(&:lv, ) • (23.)

The covariance for this setup propagates

according to

A A T+G:P*+I = F k Pk (F k )

where

F:=(I_K, HIcI, Gk A .4 A T

By (17.) we need not distinguish between pre-

update and post-update covarances (i.e..

Pk+I = P*')" If R_ is constant, which we shall

assume, then it is easy to see thanGA is also
constant.

SS Processing

HS Processing

\
HS Fieldof
View

FIGURE 3. Solar Inertial Geometry

To understand the significance of 0_, and J] in

(22.), consider the simple geometry shown in

Figure 3.. The sun vector lies in the orbit plane

and intervals of sun sensor and horizon sensor

usage are as shown. Define the set of basis

vectors S, 13'1,B2 where S is the sun vector and

B1,B2 are chosen to form a right handed

orthonormal triad or coordinate frame. We will

call this coordinate from the I'-frame.

The vectors S,BI,B2 are all eigenvectors of

F s , with eigenvalues ;ks,XB,, ;Le2 such that

ks = 1 (25.)
Xa, = _.s2 = 1- _"c

The matrix F s modifies the covariance

according to (24.) when sun sensor data is

processed. If 5qv is expressed in I'

coordinates, then by (24.)

2 __2o2 +Ts(_Sk+l - S Sk+l

(_2 = _ 2 _2
Blk+l BI OBtk+I -f"YB1

G2 2 2
B2k+l = _B2 (_B2k+I + "YB2

(26.)
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where

O'2k =P1,1,," 7S =G1,1,

O'2,k = P2.2, ; YB, = G2.2,

O22k =P3,3, ; YB2=G3,3,

and it is assumed that G_ is constant. The

behavior of the variances defined in (26.) is

simple to understand in terms of the difference

equations. The error around the sun vector

increases at a constant rate (in terms of

variance) at a rate determined by the sensor

noise and the gain e,. The orthogonal

components decay to a steady-state value as

the corresponding eigenvalues are less than

unity. The steady-state residual can be

computed using the Final Value Theorem for Z-

transforms. The decay rate is exponential and

easily determined from ;k.a,,;LB=• A design value

for 0_ is achieved by establishing acceptable

values for error growth around the sun vector,

and steady-state residual and decay rate for

error about the orthogonal vectors, and trading

off one for the other for an "optimal" compromise

The horizon sensor gain 13, can be selected

similarly.

ERROR ANALYSIS

The covariance propagation above is limited

because only the effects of sensor noise are

considered. To investigate the effects of other

errors such as a constant gyro drift, the method

described in [1] is used. The basic idea is shown

in Figure 4.

I DeltaStar I
Att. Det.

Filter

K

i utoCovariance H Covariance
I UpdateI PropagationI I
H R P Q

FIGURE 4. Error Analysis Method

For the geometry shown in Figure 3 this method

was used to generate a covariance history

assuming that,

Rs =Diag[3.05x10"-s,3.05x10--s,3.05xlO -s ]

R_ = D/ag[8. 46 x10-s,8. 46 x10-s,8. 46 x10 -s ]

pS = Diag[7.61 x 10-7,7.61 x 10-7, 7.61 x 10-7 ]

Qk = Diag[6.53xlO-13,6.53xlO-13,6.53x10 -13 ]
c_=0.01
13=0.06

where (2, is the covariance of the constant gym

bias error in radians per second, quaternion

error is dimensionless but, approximately half of

angular error in radians and sensor error is

similarly approximately half of the angle error

produced by sensor noise given in radians The

factor of two comes from the definition of

quaternion in terms of rotation angle and rotation

vector[3]. The result is shown in Figure 5.
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FIGURE 5. DSAF Covarlance Analysis

7000

For comparison, the gains in (22.) are replaced

by Kalman gains computed using

A T A AT

(27.)

The result is shown in Figure 6
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FIGURE 6. Kalman Filter Covarlance Analysis

Kalman filter performs better with respect to

orthogonal components of error during horizon

sensor updating. Note that no attempt is made

to estimate gyro drift from the sensor data.

In each of these cases, the spacecraft begins by

processing sun sensor data. The error around

the sun line slowly increases, and the orthogonal

components are reduced. At approximately

1100 seconds, an horizon sensor update occurs.

On the time interval (1200-4000), no sensor data

is processed and pure gyro drift is observed. At

4000 seconds sun sensor data is processed

again and a new cycle begins. We observe that

the convergence rates are faster for the Kalman

filter, that the Kalman filter variances converge

to smaller values and that

the

\
HS Field of
View

FIGURE 7. Nadir Pointing Geometry

We see that for the scenario described by Figure

4. the DSAF compares favorably with the

Kalman filter without having to propagate a

covariance or compute a Kalman gain. The

Kalman filter does, however, afford an

advantage which is not evident in the above

analysis. The DSAF will not work if only horizon
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sensor data is available. Clearly, such a

capability is desirable for attitude determination

reliability in the event of a sensor failure. The

Kalman filter does have this capability. For the

same statistical assumptions as above, but

using only horizon sensor data for the geometry

shown in Figure 7. we obtain the covariance

history shown in Figure 8.
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RGURE 8. DSAF Covarlance Analysis
Horizon Sensor Only

presented, and performance

against a Kalman filter.
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CONCLUSION

This paper has presented a simple filtering

algorithm DSAF for determining spacecraft

attitude from vector observations. This algorithm

was used successfully on-orbit for the Delta Star

SDIO flight experiment in 1989. It offers several

advantages over simple deterministic methods

such as TRIAD, but does not require as much

computation as a Kalman filter mechanization. If

a Kalman filter is required or desired for an

application, the DSAF is easily extendible to a

Kalman filter by means of a more elaborate gain

computation. The design parameters of the

DSAF are motivated, an error analysis is
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